Welcome to Tulip Python documentation!¶
Tulip is an information visualization framework written in C++ dedicated to the analysis and visualization of graphs. Tulip Python is a set of modules that exposes to Python almost all the content of the Tulip C++ API. The bindings has been developed with the SIP tool from Riverbank. The main features provided by the bindings are listed below:
creation and manipulation of graphs
storage of data on graph elements (float, integer, Boolean, color, size, coordinate, list, …)
application of algorithms of different types on graphs (layout, metric, clustering, …)
the ability to write Tulip plugins in pure Python
The bindings can be used inside the Tulip software GUI in order to run scripts on the current visualized graph. Starting from Tulip 3.6, the bindings can also be used outside Tulip through the classical Python interpreter.
Contents¶
- Getting started
- Release notes and API changes
- Manual
- Writing Tulip plugins in Python
- Writing a general algorithm in Python
- Writing a selection algorithm in Python
- Writing a color algorithm in Python
- Writing a measure algorithm in Python
- Writing an integer algorithm in Python
- Writing a layout algorithm in Python
- Writing a size algorithm in Python
- Writing an export module in Python
- Writing an import module in Python
- Tulip plugins documentation
- Algorithm
- Acyclic
- Biconnected
- Bidirectional Edges
- Connected
- Curve edges
- Delaunay triangulation
- Directed Tree
- Edge bundling
- Equal Value
- Free Tree
- Graph
- H3 Layout Helper
- Hierarchical
- Make Acyclic
- Make Biconnected
- Make Connected
- Make Directed Tree
- Make Planar Embedding
- Make Simple
- Maximal Cliques Enumeration
- Outer Planar
- Planar
- Planar Embedding
- Quotient Clustering
- Reverse edges
- Simple
- Squarified Tree Map Helper
- Triconnected
- Voronoi diagram
- Coloring
- Export
- Import
- Adjacency Matrix
- Attract And Introduce Model
- BibTeX
- Bollobas et al. Model
- Bu Wang Zhou Model
- CMake dependencies graph
- Catanzaro and al. Model
- Complete General Graph
- Complete Tree
- Empty graph
- Erdős-Rényi Random Graph
- File System Directory
- Fu and Liao Model
- GEXF
- GML
- GraphML
- Grid
- Grid Approximation
- Guillaume Latapy Model
- Holme and Kim Model
- JSON Import
- Klemm Eguiluz Model
- Liu et al. model
- Npm package dependencies graph
- Pajek
- Planar Graph
- Random General Graph
- Random General Tree
- Random Simple Graph
- TGF
- TLP Import
- TLPB Import
- UCINET
- Uniform Random Binary Tree
- Wang and Rong Model
- Wang et al. Model
- Watts Strogatz Model
- Web Site
- graphviz
- Labeling
- Layout
- 3-Connected (Tutte)
- Align nodes
- Balloon (OGDF)
- Bertault (OGDF)
- Bubble Pack
- Bubble Tree
- Circular
- Circular (OGDF)
- Cone Tree
- Connected Component Packing (Polyomino)
- Connected Components Packing
- Davidson Harel (OGDF)
- Dendrogram
- Dominance (OGDF)
- FM^3 (OGDF)
- Fast Multipole Embedder (OGDF)
- Fast Multipole Multilevel Embedder (OGDF)
- Fast Overlap Removal
- Fruchterman Reingold (OGDF)
- GEM (Frick)
- GEM Frick (OGDF)
- GRIP
- H3
- Hierarchical Graph
- Hierarchical Tree (R-T Extended)
- Improved Walker
- Improved Walker (OGDF)
- Kamada Kawai (OGDF)
- LinLog
- Mixed Model
- Multiple Edges Separation
- Node Respecter (OGDF)
- OrthoTree
- Perfect aspect ratio
- Pivot MDS (OGDF)
- Planarization Grid (OGDF)
- Planarization Layout (OGDF)
- Radial Tree (OGDF)
- Random layout
- Squarified Tree Map
- Stress Minimization (OGDF)
- Sugiyama (OGDF)
- Tile To Rows Packing (OGDF)
- Tree Leaf
- Tree Radial
- Upward Planarization (OGDF)
- Visibility (OGDF)
- Measure
- Betweenness Centrality
- Biconnected Components
- Cluster
- Connected Components
- Convolution
- Dag Level
- Degree
- Depth
- Eccentricity
- Id
- K-Cores
- Leaf
- Link Communities
- Louvain
- MCL Clustering
- Node
- Page Rank
- Path Length
- Random metric
- Second Order Centrality
- Strahler
- Strength
- Strength Clustering
- Strongly Connected Components
- Unique Neighbors
- Welsh & Powell
- Resizing
- Selection
- Algorithm
tulip
module API- Utility functions
- Graph elements classes
- The tlp.Graph class
- Tulip datatypes
- Tulip observation mechanism
- Graph properties classes
- tlp.PropertyInterface
- tlp.BooleanProperty
- tlp.ColorProperty
- tlp.NumericProperty
- tlp.DoubleProperty
- tlp.IntegerProperty
- tlp.LayoutProperty
- tlp.SizeProperty
- tlp.StringProperty
- tlp.BooleanVectorProperty
- tlp.CoordVectorProperty
- tlp.ColorVectorProperty
- tlp.DoubleVectorProperty
- tlp.IntegerVectorProperty
- tlp.SizeVectorProperty
- tlp.StringVectorProperty
- Tulip plugins classes
- Graph test classes
tulipgui
module APItulipplugins
module API