Tulip  5.4.0
Large graphs analysis and drawing
ParametricCurves.h
1 /*
2  *
3  * This file is part of Tulip (http://tulip.labri.fr)
4  *
5  * Authors: David Auber and the Tulip development Team
6  * from LaBRI, University of Bordeaux
7  *
8  * Tulip is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU Lesser General Public License
10  * as published by the Free Software Foundation, either version 3
11  * of the License, or (at your option) any later version.
12  *
13  * Tulip is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  */
19 ///@cond DOXYGEN_HIDDEN
20 
21 #ifndef PARAMETRICCURVES_H_
22 #define PARAMETRICCURVES_H_
23 
24 #include <vector>
25 
26 #include <tulip/tulipconf.h>
27 #include <tulip/Coord.h>
28 
29 namespace tlp {
30 
31 /**
32  * Compute the position of a point 'p' at t (0 <= t <= 1)
33  * along Bezier curve defined by a set of control points
34  *
35  * \param controlPoints a vector of control points
36  * \param t curve parameter value (0 <= t <= 1)
37  */
38 TLP_SCOPE Coord computeBezierPoint(const std::vector<Coord> &controlPoints, const float t);
39 
40 /** Compute a set of points approximating a Bézier curve
41  *
42  * \param controlPoints a vector of control points
43  * \param curvePoints an empty vector to store the computed points
44  * \param nbCurvePoints number of points to generate
45  */
46 TLP_SCOPE void computeBezierPoints(const std::vector<Coord> &controlPoints,
47  std::vector<Coord> &curvePoints,
48  const unsigned int nbCurvePoints = 100);
49 
50 /**
51  * Compute the position of a point 'p' at t (0 <= t <= 1)
52  * along Catmull-Rom curve defined by a set of control points.
53  * The features of this type of spline are the following :
54  * -> the spline passes through all of the control points
55  * -> the spline is C1 continuous, meaning that there are no discontinuities in the tangent
56  * direction and magnitude
57  * -> the spline is not C2 continuous. The second derivative is linearly interpolated within
58  * each segment, causing the curvature to vary linearly over the length of the segment
59  *
60  * \param controlPoints a vector of control points
61  * \param t curve parameter value (0 <= t <= 1)
62  * \param closedCurve if true, the curve will be closed, meaning a Bézier segment will connect the
63  * last and first control point
64  * \param alpha curve parameterization parameter (0 <= alpha <= 1), alpha = 0 -> uniform
65  * parameterization, alpha = 0.5 -> centripetal parameterization, alpha = 1.0 -> chord-length
66  * parameterization
67  */
68 TLP_SCOPE Coord computeCatmullRomPoint(const std::vector<Coord> &controlPoints, const float t,
69  const bool closedCurve = false, const float alpha = 0.5);
70 
71 /** Compute a set of points approximating a Catmull-Rom curve
72  *
73  * \param controlPoints a vector of control points
74  * \param curvePoints an empty vector to store the computed points
75  * \param closedCurve if true, the curve will be closed, meaning a Bézier segment will connect the
76  * last and first control point
77  * \param alpha curve parameterization parameter (0 <= alpha <= 1), alpha = 0 -> uniform
78  * parameterization, alpha = 0.5 -> centripetal parameterization, alpha = 1.0 -> chord-length
79  * parameterization
80  * \param nbCurvePoints number of points to generate
81  */
82 TLP_SCOPE void computeCatmullRomPoints(const std::vector<Coord> &controlPoints,
83  std::vector<Coord> &curvePoints,
84  const bool closedCurve = false,
85  const unsigned int nbCurvePoints = 100,
86  const float alpha = 0.5);
87 
88 /**
89  * Compute the position of a point 'p' at t (0 <= t <= 1)
90  * along open uniform B-spline curve defined by a set of control points.
91  * An uniform B-spline is a piecewise collection of Bézier curves of the same degree, connected end
92  * to end.
93  * The features of this type of spline are the following :
94  * -> the spline is C^2 continuous, meaning there is no discontinuities in curvature
95  * -> the spline has local control : its parameters only affect a small part of the entire
96  * spline
97  * A B-spline is qualified as open when it passes through its first and last control points.
98  * \param controlPoints a vector of control points
99  * \param t curve parameter value (0 <= t <= 1)
100  * \param curveDegree the B-spline degree
101  */
102 
103 TLP_SCOPE Coord computeOpenUniformBsplinePoint(const std::vector<Coord> &controlPoints,
104  const float t, const unsigned int curveDegree = 3);
105 
106 /** Compute a set of points approximating an open uniform B-spline curve
107  *
108  * \param controlPoints a vector of control points
109  * \param curvePoints an empty vector to store the computed points
110  * \param curveDegree the B-spline degree
111  * \param nbCurvePoints number of points to generate
112  */
113 TLP_SCOPE void computeOpenUniformBsplinePoints(const std::vector<Coord> &controlPoints,
114  std::vector<Coord> &curvePoints,
115  const unsigned int curveDegree = 3,
116  const unsigned int nbCurvePoints = 100);
117 } // namespace tlp
118 
119 #endif /* PARAMETRICCURVES_H_ */
120 ///@endcond