Tulip  5.2.1
Large graphs analysis and drawing
MapIterator.h
1 /*
2  *
3  * This file is part of Tulip (http://tulip.labri.fr)
4  *
5  * Authors: David Auber and the Tulip development Team
6  * from LaBRI, University of Bordeaux
7  *
8  * Tulip is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU Lesser General Public License
10  * as published by the Free Software Foundation, either version 3
11  * of the License, or (at your option) any later version.
12  *
13  * Tulip is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  */
19 ///@cond DOXYGEN_HIDDEN
20 
21 #include <tulip/Iterator.h>
22 #include <tulip/tulipconf.h>
23 #include <tulip/Edge.h>
24 #include <list>
25 #include <vector>
26 
27 #ifndef TULIP_NODEMAPITERATOR_H
28 #define TULIP_NODEMAPITERATOR_H
29 
30 namespace tlp {
31 
32 struct node;
33 class Graph;
34 
35 /**
36  * That function enables to obtain the next edge on a face of the embedding. It uses
37  * the EdgeMapIterators.
38  *
39  * @see NodeMapIterator
40  * @see EdgeMapIterator
41  * @see PlanarConMap
42  */
43 TLP_SCOPE edge nextFaceEdge(Graph *g, edge source, node target);
44 
45 /**
46  * @class NodeMapIterator
47  * @brief Iterator that enables to traverse the graph taking into account the ordering of edges
48  * aroung nodes
49  * @param sg the considered graph
50  * @param source the node from witch one arrives on target
51  * @param target the node the considered node (one will obtain an iterator on the neighboors of
52  * that node)
53  *
54  * Since Tulip enables to order the edges around nodes, it is possible to traverse the nodes
55  * according
56  * to that ordering. It is necessary to use that function if one wants to take into account the
57  * embedding
58  * of the graph. Such functionnality is really useful when dealing with planar graphs. However if
59  * one wants
60  * more efficient data structure for planar graphs one should consider using PlanarConMap.
61  *
62  * @see EdgeMapIterator
63  * @see PlanarConMap
64  */
65 struct TLP_SCOPE NodeMapIterator : public Iterator<node> {
66  ///
67  NodeMapIterator(Graph *sg, node source, node target);
68  ~NodeMapIterator() override;
69  /// Return the next element
70  node next() override;
71  /// Return true if it exist a next element
72  bool hasNext() override;
73 
74 private:
75  std::list<node> cloneIt;
76  std::list<node>::iterator itStl;
77 };
78 
79 /**
80  * @class EdgeMapIterator
81  * @brief Iterator that enables to traverse the graph taking into account the ordering of edges
82  * aroung nodes
83  * @param sg the considered graph
84  * @param source the edge from witch one arrives on target
85  * @param target the node the considered node (one will obtain an iterator on the neighboors of
86  * that node)
87  *
88  * Since Tulip enables to order the edges around nodes, it is possible to traverse the nodes
89  * according
90  * to that ordering. It is necessary to use that function if one wants to take into account the
91  * embedding
92  * of the graph. Such functionnality is really useful when dealing with planar graphs. However if
93  * one wants
94  * more efficient data structure for planar graphs one should consider using PlanarConMap.
95  *
96  * @see EdgeMapIterator
97  * @see PlanarConMap
98  */
99 struct TLP_SCOPE EdgeMapIterator : public Iterator<edge> {
100  ///
101  EdgeMapIterator(const Graph *sg, edge source, node target);
102  /// Return the next element
103  edge next() override;
104  /// Return true if it exist a next element
105  bool hasNext() override;
106 
107 private:
108  std::vector<edge> adj;
109  edge start;
110  int treat;
111  unsigned int pos;
112  bool finished;
113 };
114 } // namespace tlp
115 #endif
116 
117 ///@endcond